CH2

SECTION A

- 1. $(1s^2)2s^22p^6$ [1]
- 2. 8 electrons in outer shell of all species/ 8 in two F and 0 in Ca (1)

2+ on calcium ion and 1- on fluoride ions (1) [2]

- 3. (Electronegativity of an atom is) the tendency of electrons in a covalent bond to be drawn to that atom
- 4. Cs⁺ and Cl⁻ (or names caesium and chlor**id**e) with Cl⁻ at each corner and Cs⁺ in centre of cube [1]
- 5. Reagent: acidified potassium dichromate / $\text{Cr}_2\text{O}_7^{2-}$ and H^+ or acidified manganate(VII) / MnO_4^- and H^+ (1)

Colour change: from orange to green or from purple to colourless (1) [2]

6. 2-chlorobut-1-ene [1]

7.
$$C_{20}H_{42} \rightarrow C_5H_{10} + C_6H_{12} + C_9H_{20}$$
 [1]

8.

[1]

Total Section A [10]

SECTION B

9.	(a)	(i)	Potassium bursts into flames sodium does not / potassium darts ab surface more vigorously than sodium	out [1]
		(ii)	$1^{\rm st}$ ionisation energy decreases as group is descended / as elembras higher $A_{\rm r}$ (1)	ent
			(Atom) becomes larger / outer electron further from nucleus / more shielding / less effective nuclear charge (1)	[2]
		(iii)	As group descended outer electron more easily lost	[1]
	(b)	(i)	Electronegativity (difference between the atoms) (1)	
			The bigger the difference the more likely is an ionic bond / ORA covalent (1)	for [2]
		(ii)	lonic: high electron density centred round ions / shown on diagram	(1)
			Covalent: high electron density between nuclei/atoms / shown diagram (1)	on
			Intermediate: high electron density between nuclei/atoms but hig nearer one of them / ions with electron distortion of negative ion (1)	
	(c)	(i)	Calcium	[1]
		(ii)	Calcium chloride/ CaCl ₂ – error carried forward (ecf) from (i)	[1]
		(iii)	White precipitate/ solid – ecf from (i)	[1]
		(iv)	$Ca^{2+} + 2OH^{-} \rightarrow Ca(OH)_{2}$ (ignore state symbols) – ecf from (i)	[1]
			Penalise incorrect metal once only in (c)	

Total [13]

© WJEC CBAC Ltd. 8

10. (a) The last/valence electron entered a p orbital/sub-shell [1]

(b) (i)
$$\begin{bmatrix} H \\ \cdot \times \\ H \cdot \times \\ N : H \end{bmatrix}$$
 do not penalise missing + sign [1]

(ii) $109^{\circ} - 110^{\circ}$ (1)

Pairs of electrons move towards positions of minimum repulsion/ of maximum separation (1) [2]

(iii)
$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$
 [1]

- (c) (i) In this reaction nitrogen (1) has been reduced because its oxidation number has changed from (+) 5 to (+) 3 (1) [2]
 - (ii) Moles NaNO₃ = 4.40/85 = 0.0518 (1) Moles oxygen = 0.0259 (1) Volume of oxygen = $0.0259 \times 24 = 0.62$ (dm³) (1) Ecf throughout [3]
- (d) Mass in solution at 30° C = 96/2 = 48 (g) (1) Mass that crystallised = 65 - 48 = 17 (g) (1) [2]

Total [12]

11.	(a)	(i)	δ – on Br and δ + on C attached (1)		
			Arrow from lone pair on OH $^-$ to δ + on C (1)		
			Arrow from C-Br bond to Br (1)		
			Correct alcohol + Br ⁻ (1)	[4]	
		(ii)	Nucleophilic substitution	[1]	
		(iii)	The bond breaks and both the electrons go to one of the bonded atoms/ the bond breaks and ions are formed.	[1]	
	(b)	(i)	Sodium hydroxide in ethanol/ alcohol	[1]	
		(ii)	Elimination/ dehydrohalogenation	[1]	
		(iii)	Structural formulae for but-1-ene (1)		
			and but-2-ene (1)	[2]	
	(c)		on-miscible with water/ does not mix with water and B is miscible/ mater/ is soluble in water (1)	B is miscible/ mixes	
		A has a longer carbon chain/ is bigger (1)			
		Hydrogen bonding (1)			
		Between the OH in alcohol and water (1) In large alcohols non-polar/ hydrophobic part of molecule is large / OH is le significant part of molecule (1) QWC: organisation of information clearly and coherently; use of specialist vocabulary such as intermolecular force/ hydrogen bond/ hydrophobic/ non polar/ miscible			

Total [16]

© WJEC CBAC Ltd. 10

12. (a) Any 3 from 4 points:

Bonding is metallic (1)

This is **attraction** between the sea/ delocalised electrons and the positive ions (1)

 Al^{3+} has more electrons in the sea than Na^+ / Al^{3+} has a higher charge density than Na^+ (1)

More energy is needed to overcome forces in Al (1) [3]

QWC: legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning [1]

(b) (Brown) iodine is formed (1)

Equation:
$$Cl_2 + 2l^- \rightarrow 2Cl^- + l_2 / Cl_2 + 2Kl \rightarrow 2KCl + l_2$$
 (ignore state symbols) (1)

Chlorine is a better oxidising agent than iodi**ne**/ has a greater affinity for the electron/ chlorine has oxidised iod**ide** (1) [3]

(c) Ammonia is easily liquefied because it has a high boiling temperature (compared with ethane) (1)

Ammonia contains hydrogen bonds (1)

Ethane has van der Waals forces/ induced dipole-induced dipole forces (1)

Hydrogen bonds are stronger than van der Waals forces (1) [4]

(d) Reaction produces a mixture of halogenocompounds/ more than one halogen can be substituted / ethane (1)

The mechanism is (free) radical (1)

Any equation with product a polychloromethane/ ethane (1) [3]

QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]

Total [15]

> 300°C for Al₂O₃/ pumice (1)

Total [14]

[4]

Total Section B [70]

© WJEC CBAC Ltd. 12