## CH2

## SECTION A

1. $\left(1 s^{2}\right) 2 s^{2} 2 p^{6}$
2. 8 electrons in outer shell of all species/ 8 in two F and 0 in Ca (1)
$2+$ on calcium ion and 1 - on fluoride ions (1)
[2]
3. (Electronegativity of an atom is) the tendency of electrons in a covalent bond to be drawn to that atom
4. $\quad \mathrm{Cs}^{+}$and $\mathrm{Cl}^{-}$(or names caesium and chloride) with $\mathrm{Cl}^{-}$at each corner and $\mathrm{Cs}^{+}$in centre of cube
5. Reagent: acidified potassium dichromate / $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ and $\mathrm{H}^{+}$ or acidified manganate(VII) / $\mathrm{MnO}_{4}^{-}$and $\mathrm{H}^{+}$(1)

Colour change: from orange to green
or from purple to colourless (1)
6. 2-chlorobut-1-ene
7. $\quad \mathrm{C}_{20} \mathrm{H}_{42} \rightarrow \mathrm{C}_{5} \mathrm{H}_{10}+\mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{C}_{9} \mathrm{H}_{20}$
8.


## SECTION B

9. (a) (i) Potassium bursts into flames sodium does not / potassium darts about surface more vigorously than sodium
(ii) $\quad 1^{\text {st }}$ ionisation energy decreases as group is descended / as element has higher $A_{r}(1)$
(Atom) becomes larger / outer electron further from nucleus / more shielding / less effective nuclear charge (1)
(iii) As group descended outer electron more easily lost
(b) (i) Electronegativity (difference between the atoms) (1)

The bigger the difference the more likely is an ionic bond / ORA for covalent (1)
(ii) Ionic: high electron density centred round ions / shown on diagram (1)

Covalent: high electron density between nuclei/atoms / shown on diagram (1)

Intermediate: high electron density between nuclei/atoms but higher nearer one of them / ions with electron distortion of negative ion (1) [3]
(c) (i) Calcium
(ii) Calcium chloride/ $\mathrm{CaCl}_{2}$ - error carried forward (ecf) from (i)
(iii) White precipitate/ solid - ecf from (i)
(iv) $\mathrm{Ca}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$ (ignore state symbols) - ecf from (i)

Penalise incorrect metal once only in (c)
Total [13]
10. (a) The last/valence electron entered a p orbital/sub-shell
(b) (i)

do not penalise missing + sign
(ii) $109^{\circ}-110^{\circ}$ (1)

Pairs of electrons move towards positions of minimum repulsion/ of maximum separation (1)
(iii) $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
(c) (i) In this reaction nitrogen (1) has been reduced because its oxidation number has changed from (+) 5 to (+) 3 (1)
(ii) Moles $\mathrm{NaNO}_{3}=4.40 / 85=0.0518$ (1)

Moles oxygen $=0.0259$ (1)
Volume of oxygen $=0.0259 \times 24=0.62\left(\mathrm{dm}^{3}\right)(1)$
Ecf throughout
(d) Mass in solution at $30^{\circ} \mathrm{C}=96 / 2=48$ (g) (1)

Mass that crystallised $=65-48=17(\mathrm{~g})(1)$

Total [12]
11. (a) (i) $\delta$ - on Br and $\delta+$ on C attached (1)

Arrow from lone pair on $\mathrm{OH}^{-}$to $\delta+$ on C (1)
Arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br (1)
Correct alcohol $+\mathrm{Br}^{-}$(1)
(ii) Nucleophilic substitution
(iii) The bond breaks and both the electrons go to one of the bonded atoms/ the bond breaks and ions are formed.
(b) (i) Sodium hydroxide in ethanol/ alcohol
(ii) Elimination/ dehydrohalogenation
(iii) Structural formulae for but-1-ene (1) and but-2-ene (1)
(c) $A$ is non-miscible with water/ does not mix with water and $B$ is miscible/ mixes with water/ is soluble in water (1)

A has a longer carbon chain/ is bigger (1)
Hydrogen bonding (1)
Between the OH in alcohol and water (1)
In large alcohols non-polar/ hydrophobic part of molecule is large / OH is less significant part of molecule (1)

QWC: organisation of information clearly and coherently; use of specialist vocabulary such as intermolecular force/ hydrogen bond/ hydrophobic/ nonpolar/ miscible
12. (a) Any 3 from 4 points:

Bonding is metallic (1)
This is attraction between the sea/ delocalised electrons and the positive ions (1)
$\mathrm{Al}^{3+}$ has more electrons in the sea than $\mathrm{Na}^{+} / \mathrm{Al}^{3+}$ has a higher charge density than $\mathrm{Na}^{+}$(1)

More energy is needed to overcome forces in Al (1)
QWC: legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning
(b) (Brown) iodine is formed (1)

$$
\text { Equation: } \mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{I}_{2} / \quad \mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}
$$

(ignore state symbols) (1)
Chlorine is a better oxidising agent than iodine/ has a greater affinity for the electron/ chlorine has oxidised iodide (1)
(c) Ammonia is easily liquefied because it has a high boiling temperature (compared with ethane) (1)

Ammonia contains hydrogen bonds (1)
Ethane has van der Waals forces/ induced dipole-induced dipole forces (1)
Hydrogen bonds are stronger than van der Waals forces (1)
(d) Reaction produces a mixture of halogenocompounds/ more than one halogen can be substituted / ethane (1)

The mechanism is (free) radical (1)
Any equation with product a polychloromethane/ ethane (1)
QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter
13. (a) (i) Mass C $=1.79 \times 12 / 44=0.488(\mathrm{~g})$
(ii) Mass $\mathrm{O}=0.65(\mathrm{~g}) \quad$ ecf from part (i)
(iii) $\mathrm{C}: \mathrm{H}: \mathrm{O}=0.488 / 12: 0.061 / 1: 0.65 / 16=0.0407: 0.061: 0.0406$ (1)
$=2: 3: 2$ empirical formula is $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (1)
No ecf from incorrect ratios
(iv) $\quad \mathrm{Mr}$ of empirical formula $=59$ so molecular formula is $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$ so $F$ is acid $2 /$ molecular formula acid 1 is $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ so empirical formula is not $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ molecular formula acid 2 is $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$ so empirical formula is $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
(v) Bromine turns from brown/red-brown to colourless for Acid 1
(vi)

(b) (i) $\mathrm{Mr} /$ molecular ion (is 46)
(ii) $\mathrm{CH}_{3}$ (present)
(iii) OH (present)
(c) Ethene to ethanol: steam (1)
$\mathrm{H}_{3} \mathrm{PO}_{4}$ (catalyst) (1)
Ethanol to ethene: conc $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3} /$ pumice (1)
High temperature $>150^{\circ} \mathrm{C}$ for $\mathrm{H}_{2} \mathrm{SO}_{4}$
$>300^{\circ} \mathrm{C}$ for $\mathrm{Al}_{2} \mathrm{O}_{3} /$ pumice (1)

